Inverse continuous wavelet transform in weighted variable exponent amalgam spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Variable Exponent Amalgam Spaces

We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...

متن کامل

Continuous wavelet transform in variable Lebesgue spaces

In the present note we investigate norm and almost everywhere convergence of the inverse continuous wavelet transform in the variable Lebesgue space. Mathematics Subject Classification (2010): Primary 42C40, Secondary 42C15, 42B08, 42A38, 46B15.

متن کامل

Interpolation in Variable Exponent Spaces

In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.

متن کامل

Gabor Analysis in Weighted Amalgam Spaces

Gabor frames {e2πinβ·xg(x− kα)}n,k∈Zd provide series representations not only of functions in L(R) but of the entire range of spaces M ν known as the modulation spaces. Membership of a function or distribution f in the modulation space is characterized by a sequence-space norm of the Gabor coefficients of f depending only on the magnitudes of those coefficients, and the Gabor series representat...

متن کامل

The Continuous Wavelet Transform and Variable Resolution Time–Frequency Analysis

Wavelet transforms have recently emerged as a mathematical tool for multiresolution decomposition of signals. They have potential applications in many areas of signal processing that require variable time–frequency localization. The continuous wavelet transform is presented here, and its frequency resolution is derived analytically and shown to depend exclusively on one parameter that should be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics

سال: 2020

ISSN: 1303-5991

DOI: 10.31801/cfsuasmas.710208